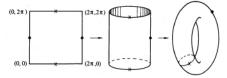
Universidade Federal do ABC

Lista 5 - Topologia

Espaços Quocientes e Enumerabilidade

Quociente

- **1** Na definição de espaço quociente, mostre que a topologia quociente é realmente uma topologia para X/\sim .
- **2** Seja $f: X \to Y$ uma função contínua de X para Y e suponha que Y tem a topologia quociente determinada por f Prove que uma função $g: Y \to Z$ de Y para um espaço Z é contínua se e somente se o função composta $g \circ f: X \to Z$ é contínua.
- 3 Quais são as topologias quocientes das topologias discretas e trivial?
- **4** Mostre que o toro $S^1 \times S^1$ é homeomorfo a X/\sim onde $X = [0, 2\pi] \times [0, 2\pi]$ e \sim está indicada na figura abaixo (a qual foi extraída do livro *General Topology*, de S. Willard).



- **5** Descreva uma relação de equivalência em \mathbb{R}^2 para a qual o espaço quociente resultante é homeomorfo a um círculo.
- **6** Sejam X = [0, 1] e ~ a seguinte relação de equivalência sobre X:

$$x \sim y \Leftrightarrow x = y \text{ ou } x, y \in]0,1[$$

Mostre que X/\sim não é T_1 .

7 — Sejam $X = \mathbb{R}$ e ~ a seguinte relação de equivalência sobre X:

$$x \sim y \Leftrightarrow x = y \text{ ou } x, y \in \mathbb{Z}$$

Mostre que X/\sim não satisfaz o primeiro axioma de enumerabilidade.

- **8** Seja X um conjunto, e $\{f_{\alpha}: X \to A_{\alpha}, \alpha \in \mathcal{A}\}$ uma família de funções com domínio X e \mathfrak{T} a topologia fraca gerada pela dada família de funções. Prove que se Y é um subconjunto de X, então a topologia do subespaço para Y como subespaço de (X,\mathfrak{T}) é igual à topologia fraca gerada pela família de restrições $\{f_{\alpha}|_{Y}: Y \to A_{\alpha}, \alpha \in \mathcal{A}\}$
- ${f 9}$ Descreva a topologia fraca de ${\Bbb R}$ gerada por cada uma das seguintes famílias de funções. (Suponha que o contradomínio tenha a topologia usual e determine a topologia fraca para o domínio.)
- a) A família de funções constantes.
- b) O conjunto de todas as funções contínuas em relação à topologia usual.
- c) A família que consiste apenas da aplicação identidade em \mathbb{R}
- * d) O conjunto de todas as funções reais limitadas que são contínuas em relação à topologia usual.
- **10** Sejam X um espaço topológico e f : X → Y uma aplicação.
- a) Prove que $C \subset Y$ é fechado na topologia quociente se e somente se $f^{-1}(C)$ é fechado em X.

- b) Prove que se Y é um espaço topológico, e f leva subconjuntos fechados em subconjuntos fechados, então a topologia em Y é mais fina que a topologia quociente.
- c) Prove que, se Y é um espaço topológico, e f seja uma função contínua e leve subconjuntos fechados para subconjuntos fechados, a topologia em Y é a topologia quociente.
- d) Mostre que, em geral, a aplicação quociente pode não levar subconjuntos fechados para subconjuntos fechados.

Enumerabilidade

11 − Dados X um conjunto infinito e $x_0 \in X$, vimos que

$$\mathcal{B} = \{\{x\} : x \in X \text{ e } x \neq x_0\} \cup \{A \subseteq X : x_0 \in A \text{ e } X \setminus A \text{ \'e finito}\}$$

é base para a topologia

$$\tau = \{A \subseteq X : \chi_0 \notin A\} \cup \{A \subseteq X : X \setminus A \text{ \'e finito}\}$$

sobre X. Quais axiomas de enumerabilidade o espaço topológico (X, τ) satisfaz?

- 12 Quais axiomas de enumerabilidade a Reta de Michael satisfaz?
- **13** Sejam τ e σ topologias sobre um conjunto X tais que $\tau \subseteq \sigma$.
- a) Se (X, τ) satisfaz determinado axioma de enumerabilidade então (X, σ) também o satisfaz?
- b) Se (X, σ) satisfaz determinado axioma de enumerabilidade então (X, τ) também o satisfaz?
- **14** Seja X um espaço topológico que satisfaz o segundo axioma de enumerabilidade. Mostre que se \mathcal{B} é uma base para X então existe $\mathcal{B}' \subseteq \mathcal{B}$ enumerável tal que \mathcal{B}' é base para X.
- **15** Mostre que se X é um espaço topológico separável e S é um subespaço aberto de X então S também é separável.
- **16** Mostre que o subespaço $(\mathbb{R} \setminus \mathbb{Q})^2$ de \mathbb{R}^2 é separável.
- **17** Dizemos que um espaço topológico X satisfaz a countable chain condition (abreviadamente, c.c.c.) se toda família de subconjuntos abertos de X dois a dois disjuntos é enumerável.

Mostre que se X é separável então X satisfaz a c.c.c.

- **18** Decida se as afirmações abaixo são verdadeiras ou falsas, justificando suas respostas:
- a) Toda sequência em um conjunto munido da topologia caótica converge.
- b) Nenhuma sequência em um conjunto munido da topologia discreta converge.
- **19** Descreva as sequências convergentes em (\mathbb{Z}, τ) , onde τ denota a topologia cofinita sobre \mathbb{Z} .
- **20** Sejam (X, d) um espaço métrico, $(x_n)_{n \in \mathbb{N}}$ uma sequência em X e $x \in X$. Mostre que $x_n \to x$ (com respeito à topologia associada à métrica d) se, e somente se, $\lim_{n \to \infty} d(x_n, x) = 0$.
- **21** Sejam X e Y espaços topológicos, $(x_n)_{n\in\mathbb{N}}$ uma sequência em X e $(y_n)_{n\in\mathbb{N}}$ uma sequência em Y. Mostre que a sequência $((x_n,y_n))_{n\in\mathbb{N}}$ converge para $(x,y)\in X\times Y$ se, e somente se, $(x_n)_{n\in\mathbb{N}}$ converge para x e $(y_n)_{n\in\mathbb{N}}$ converge para y.
- **22** Sejam X um conjunto não-enumerável e $x_0 \in X$. Considere X munido da topologia gerada pela base

$$\mathcal{B} = \{\{x\} : x \in X \text{ e } x \neq x_0\} \cup \{A \subseteq X : x_0 \in A \text{ e } X \setminus A \text{ \'e enumer\'avel}\}.$$

Seja Y um espaço topológico T_1 que satisfaz o primeiro axioma de enumerabilidade. Mostre que uma aplicação $f: X \to Y$ é contínua se, e somente se, o conjunto $\{x \in X : f(x) \neq f(x_0)\}$ é enumerável.

- **23** Mostre que o conjunto $\mathbb{R}^{\mathbb{N}}$ munido da topologia box não satisfaz nenhum dos axiomas de enumerabilidade.
- **24** Sejam $X = \mathbb{R}$ e ~ a seguinte relação de equivalência sobre X:

$$x \sim y \Leftrightarrow x = y \text{ ou } x, y \in \mathbb{Z}$$

Mostre que X/\sim não satisfaz o primeiro axioma de enumerabilidade.